Three-Dimensional Hysteresis Modeling of Robotic Artificial Muscles with Application to Shape Memory Alloy Actuators

نویسندگان

  • Jun Zhang
  • Michael C. Yip
چکیده

Being inherently compliant, the robotic artificial muscles are increasingly popular in applications such as safe human-robot interaction, legged robotics, prostheses and orthoses, and soft robotics. Their full utilization is often challenged by the coupled hysteresis among input, strain, and tension force. Although conventional two-dimensional hysteresis models are available, no prior studies on three-dimensional hysteresis models with coupled inputs have been reported for robotic artificial muscles. This paper presents a new approach to capturing the threedimensional hysteresis of robotic artificial muscles by embedding a two-stage Preisach model. The proposed method is applied to shape memory alloy (SMA) actuators. Since direct temperature measurement of the SMA actuator is not available, the concept of temperature surrogate, representing the constant voltage value in Joule heating that would result in a given temperature at the steady-state, is adopted. The proposed approach is utilized to capture the hysteresis among temperature surrogate, contraction length, and force of an SMA actuator. Model verification is further conducted. For comparison purposes, two modeling approaches, namely, the Summed Preisach and the Linear Preisach, are also realized. Experimental results demonstrate that the proposed scheme can effectively characterize and estimate the three-dimensional hysteresis in SMA actuators. This study can be applied towards other robotic artificial muscles such as McKibben actuators and Super-coiled Polymer actuators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling SMA actuated systems based on Bouc-Wen hysteresis model and feed-forward neural network

Despite the fact that shape-memory alloy (SMA) has several mechanical advantages as it continues being used as an actuator in engineering applications, using it still remains as a challenge since it shows both non-linear and hysteretic behavior. To improve the efficiency of SMA application, it is required to do research not only on modeling it, but also on control hysteresis behavior of these m...

متن کامل

Characterization of Constrained Aged Niti Strips for Using In Artificial Muscle Actuators (Technical Note)

Marvelous bending/straightening effects of two-way shape memory alloy (TWSMA) help their employment in design and manufacturing of new medical appliances. Constrained ageing with bending load scheme can induce two-way shape memory effect (TWSME). Scanning electron microscope (SEM) analysis, electrical resistivity measurement (ERM) and differential scanning calorimetry (DSC) are employed to dete...

متن کامل

Experimental Hysteresis Identification and Micro-position Control of a Shape-Memory-Alloy Rod Actuator

In order to exhaustively exploit the high-level capabilities of shape memory alloys (SMAs), they must be applied in control systems applications. However, because of their hysteretic inherent, dilatory response, and nonlinear behavior, scientists are thwarted in their attempt to design controllers for actuators of such kind.  The current study aims at developing a micro-position control system ...

متن کامل

Hysteresis Modeling, Identification and Fuzzy PID Control of SMA Wire Actuators Using Generalized Prandtl-Ishlinskii Model with Experimental Validation

In this paper, hysteretic behavior modeling, system identification and control of a mechanism that is actuated by shape memory alloy (SMA) wires are presented. The mechanism consists of two airfoil plates and the rotation angle between these plates can be changed by SMA wire actuators. This mechanism is used to identify the unknown parameters of a hysteresis model. Prandtl–Ishlinskii method is ...

متن کامل

Optimization of fuzzy controller for an SMA-actuated artificial finger robot

The purpose of this paper is to design and optimize an intelligent fuzzy-logic controller for a three-degree of freedom (3DOF) artificial finger with shape-memory alloy (SMA) wire actuators. The robotic finger is constructed using three SMA wires as tendons to bend each phalanx of the finger around its revolute joint and three torsion springs which return the phalanxes to their original positio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017